Saturday, August 28, 2010

Geological Movie Review of Armageddon - Part 9


- Life on an Asteroid -
- Composition and Shape -

1:24:05 - Finally, we reach the asteroid. First off I want to describe what an asteroid that size would actually resemble, then we can compare it to the asteroid in the movie. Currently in science, it is believed that an object that size in space would be considered a dwarf planet. As of today (August 2010) there are 5 dwarf planets recognized Ceres, Pluto, Eris (formerly "Xena) (Space), Makemake, and Haumea. They are considered dwarf planets and not asteroids because they are very large and relatively spherical. They are spherical because at that size their gravity dictates a shape similar to their larger brothers (the planets). Based on size, both Ceres (pictured left) and Charon (Pluto's moon pictured right) are relatively the same size as the Armageddon asteroid. So the shape of the asteroid and any superficial features would be similar to both of those celestial bodies. Ceres and Vesta are the two largest asteroids in the Asteroid Belt (both pictured left) so their composition and internal structure would in theory be similar to the composition of the Armageddon asteroid. So for all intensive purposes, Ceres is the Armageddon asteroid .
           
Overall the shape of the asteroid is going to be spherical. This is caused by its massive size and it probably would be considered a proto-planet, similar to Ceres (Space). The surface is going to look like any other object that sits inside an asteroid belt.
It is going to be beaten and pot marked from countless numbers of other asteroids and debris crashing into it. Overall though, compared to its size the surface is going to be relatively smooth, with none of those weird growths as seen on the asteroid in the movie. Even after it gets pummeled by a comet there is no reason for the growths to be there, this is not an overly dynamic surface.
           
The internal structure of Ceres is most likely layered, like Earth, due to some minimal heating during its formation. Although, the asteroid likely did not get as hot as the Earth, so the layering is not going to be perfect. But it is still going to be there (Picture left below). The surface of the asteroid is a thin dusty outer crust that might have some crystals of water that were released in the collision with the comet but nothing as gigantic as seen in the movie. It is now thought that Ceres might even have more water locked away in it's interior then all of Earth. This would, in essence, hinder any attempt at asteroid destruction by burying a bomb, since a fault would not run through the ice and the rock but it would follow the layers.

Surrounding the asteroid in the movie was a cloud of "debris". The debris seems logical enough because the asteroid had the stuffing kicked out of it, which caused it to be hurtled towards Earth. Some of the debris that got knocked in the same direction as the asteroid is going to be flying at roughly the same speed. Some faster, some slower but overall they will be clumped together. This part of the movie I can see as feasible.
           
In regards to the composition of the surface of Ceres, from what we know it is not uniform. So this would indicate that, yes, some areas are going to be rocky and some areas are going to have more iron in them (Space). The asteroid belt is the remains from a planet that never fully formed, or was ripped apart, so a majority of the asteroids have an iron-nickel composition. The surface of Ceres is a conglomeration of the other asteroids in its vicinity that crashed down onto the surface. So it is possible to have regions of compressed iron-ferrite (a variety of iron), if it got hit in that spot by a mostly iron asteroid sometime in the past.

- Arrival -
1:24:05 - On to the movie. We have already stated that the surface of the asteroid is going to look nothing like it did in the movie. In actuality I would say the surface is going to resemble the moon, more than less. As for the shape of the asteroid it is difficult to tell what shape they made it but I am going to go with it looks a little more like Eros (in the picture above) than Ceres, which would be the proper shape for an asteroid far smaller. Even if it was the size of Eros the surface would still be similar to the moon.
           
We already discussed the stunt flying as being feasible, although they are doing more tricks then I would say would be possible in real life but I say give them their fun. After their stunt flying, one ship crashed and the other one lands safely although very far (26 miles) off course. Maybe their high tech radar is not worth the money they spent on it. Seems more like a video game then an actual NASA program. Hey, maybe I could be an astronaut!

- Independence is Dead -
1:31:03 - Here is one of the major problems I found in the movie, although it is only a minor thing in the movie itself. The one shuttle that crashed is completely open to the atmosphere, or lack there of. This means no oxygen, none, zilch, zip. So how is there fire? Fire feeds off oxygen and there are not even oxygen lines that it is on so that I can justify it. There is no way that there could be fire in the torn open shuttle.
           
Moving on. Why does the Armadillo have a machine gun? Are they expecting Aliens or Predators to come out? My rambling does have a scientific point though, so don't worry. The machine gun is used to blast a hole in the side of the shuttle. Did anyone else notice that the titanium alloy shuttle that was built to withstand asteroids whipping into it was punctured like aluminum foil from the machine gun? They could have done something better with that whole scene.

1:38:33 - Remarkably, when looking at the background behind the Armadillo while Ben is arguing about how he doesn't know what a button does, it is possible to see what I would expect from the surface of an asteroid to look like. So it turns out that some of the surfaces in the movie are different depending on where they are. Although this would not be the case, since the asteroid would have more or less uniform surficial features, at least it shows the background like it should be at least once.

1:52:00 - When the Armadillo attempts their "Evel Knievel" stunt they release the thrusters, that were holding them down, then while they are in mid air they start them again on the other side. Theoretically this should work, since the escape velocity for the asteroid is so low. Assuming the Armadillo could handle the impact from the thrusters launching it back into the asteroid I think everything should work out alright. The only foreseeable problem would be when they are over the canyon that they did not achieve escape velocity and they end up falling, very slowly, back down to the asteroid. But by then they should be on the other side of the canyon anyhow. So either way it all works out.

- Freedom Reigns -
1:32:48 - The second shuttle made a rather safer landing on the other side of the asteroid. From their drill site they had a very good view of Earth. Now think. The asteroid is roughly the size of Texas, 780 miles in diameter, and it is traveling at ~22,000 mph. The shuttle is traveling at 22,500 mph, which is in relation to the asteroid, about 500 mph. So to get from the back of the asteroid to the front side facing the Earth where they landed would take about 2 hours. Definitely not even close to the amount of time it took them, even if they cut down the time for entertainments sake.
           
After the landing the second shuttle starts to drill. I already stated that it is possible to have an iron plate on the surface, so that is ok. The drilling speeds are justified, 57 feet in 2 hours through solid iron, ok so far. The one main problem I have with this I described previously when they came up with the plan. The asteroid is not going to be a solid object. There is no fault that runs the length of the entire asteroid since it is layered and 800 feet barely scratches the surface of the thing, so whatever they do it does not matter. Even if the layers are different then Ceres and there is not a water layer it is still going to be layered and different layers will not fault the same. Just explode the bomb on the surface you will do just as much damage as if it were 800 feet down.
           
So now that we know that everything they do is useless anyway lets go on to the working conditions. While they are working on the asteroid they seem to have all the struggles they would on Earth. The problem though is that due to the size of the asteroid it would only have about 3% the gravity of Earth (ASI.org). I will take it for granted that when they are walking, it is similar to Earth because the suits hold them against the ground (due to the thrusters) but the other equipment like the transmission for the drill would weigh practically nothing where just 2 of them would be able to move it. A 1000 pound piece of equipment would only weigh 30 pounds so unless the drill transmission weighed 10,000 pounds on Earth I see no reason why they would need 3 or 4 people to move it.

- Unstable Trajectory -
1:37:39 - As previously commented on, the moon's gravity actually did have an effect on the asteroid. Yea for science. But unlike the slight slingshot effect that I predicted, they stated that the rotation of the asteroid was altered from a 1 axis spin, like the Earth's, to a 3 axis spin, like a poorly thrown football. In reality the moon's gravity is going to have a great deal of effect on the asteroid due to its proximity. The real question is what it will be and why did the "geniuses" at NASA think there would be no effect? Perhaps the asteroid is moving too fast and too far away for a complete slingshot effect but the gravity did pull it resulting in the rotational effect seen in the movie. So in real life this is most likely the probably outcome. Well they can't get them all wrong, can they?
           
The reason that communications are cut off are related to this as well. Before the asteroid changed its spin it was rotating on the x-axis, meaning that the same side should be facing the planet the entire time. So radio communication would be uninterrupted. But since radio contact is a line of sight thing, if the asteroid is turning then you will loose the line of sight eventually causing a "communications blackout", essentially what happened in the movie.
           
Luckily through all the tumbling this thing is going through they are always able to see Earth from the digging site. What? How is this even possible? And how do they have a communications blackout? One minute it is tumbling uncontrollably the next it is stable with a clear view of Earth. Can they keep anything consistent in this movie?

- Breaking Up -
2:04:58 - Now for some unknown reason the asteroid starts to breakup. Fire trails are produced from random asteroid chunks being tossed around. My best guess is that since the asteroid is now caught in between the gravity wells of the Earth and the moon, the 2 bodies are tearing the asteroid apart. As described way earlier, there would be no fire trails since there is no atmosphere to burn them up so that is a mute point as this time. In regards to the asteroid being torn apart, I would say that it would happen over a period of time, not all of the sudden, but I agree that it would likely happen. With the speed that things are happening in the movie, I feel that this whole experience is similar to how it should happen, just in fast forward.

No comments:

Post a Comment

Due to the large number of spam comment (i.e. pretty much all of them). I have turned off commenting. If you have any constructive comments you would like to make please direct them at my Twitter handle @Jazinator. I apologize for the inconvenience.

Note: Only a member of this blog may post a comment.